
Details on class implementation,

Interfaces and Polymorphism

Check out OnToInterfaces from SVN

 Scope
◦ Variables, fields and methods, class names

 Packages

 Interfaces and polymorphism

 Scope : the region of a program in which a
name can be accessed
◦ Parameter scope : the whole method body

◦ Local variable scope : from declaration to block end:

 public double area() {

double sum = 0.0;

Point2D prev =

this.pts.get(this.pts.size() - 1);

for (Point2D p : this.pts) {

sum += prev.getX() * p.getY();

sum -= prev.getY() * p.getX();

prev = p;

}

return Math.abs(sum / 2.0);

} Q1

 Member scope : anywhere in the class,
including before its declaration
◦ This lets methods call other methods later in the

class.

 public class members can be accessed
outside the class using “qualified names”

◦ Math.sqrt()

System.in

◦ list.size()

p.x

Q2

Static

Instance
Where list is an ArrayList

and p is a Point

public class TempReading {

private double temp;

public void setTemp(double temp) {

… temp …

}

// …

}

this.temp = temp;

What does this
“temp” refer

to?
Reminder: Always qualify field

references with this. It
prevents accidental shadowing.

Q3

 Static imports let us use unqualified names:

◦ import static java.lang.Math.PI;

◦ import static java.lang.Math.cos;

◦ import static java.lang.Math.sin;

Can then refer to just

PI

cos

sin

 See the Polygon.drawOn() method

 Let us group related
classes

 We’ve been using them:

◦ javax.swing

◦ java.awt

◦ java.lang

 Can (and should) group
our own code into
packages
◦ Eclipse makes it easy…

Q4

 Remember the problem with Timer?
◦ Two Timer classes in different packages

◦ Was OK, because packages had different names

 Package naming convention: reverse URLs
◦ Examples:

 edu.roseHulman.csse.courseware.scheduling

 com.xkcd.comicSearch

Specifies the
company or
organization

Groups related
classes as

company sees fit

Q5

 Can use import to get classes from other
packages:

◦ import java.awt.Rectangle;

 Suppose we have our own Rectangle class
and we want to use ours and Java’s?
◦ Can use “fully qualified names”:

 java.awt.Rectangle rect =

new java.awt.Rectangle(10, 20, 30, 40);

◦ U-G-L-Y, but sometimes needed.

I don’t even want this
package. Why did I

sign up for the
stinging insect of the
month club anyway?

 Motivation: say I write a sort method for
Students, which compares them by student
ID. Relies on the fact that students can be
compared with each other.

 What if I want to sort BankAccounts by
balance instead?

 Specify a contract to implement every method
in the interface

 Some code (called client of the interface) can
use variables that implement the interface.

 Other code can implement the interface

 This clean separation allows the code that
implements the interface to be changed
without changing the client code at all!

 Why might I want to re-use the client code?

Q6

public interface Comparable<T> {

/**

* Compares this object with the specified

* object for order. Returns a negative integer,

* zero, or a positive integer as this object is

* less than, equal to, or greater than the

* specified object.

*/

int compareTo(T object);

}

public class BigInteger implements Comparable<BigInteger> {

…

}

interface, not class

No method
body, just a
semi-colon

No “public”,
automatically

are so

BigInteger promises to implement all the
methods declared in the Comparable interface:

Type parameter –
Comparable to type T

objects

<<interface>>
Comparable<T>

Student BigInteger

Arrays (includes
sort)

Q7

Distinguishes
interfaces

from classes

Hollow, closed
triangular tip

means
BigInteger is a
Comparable

BigRational

 Comparable c = new Student(…);

if (c.compareTo(other) < 0) { … }

c = new BigInteger(…);

if (c.compareTo(other) < 0) { … }

 The type of the actual object determines the
method used.

Q8a-c

 Origin:
◦ Poly many

◦ Morphism shape

 Classes implementing an interface give many
differently “shaped” objects for the interface
type

 Late Binding: choosing the right method
based on the actual type of the implicit
parameter at run time

Q8d-10

 Tonight’s homework

 Our unit tests are a Client to Arithmetic
objects and Comparable objects.

 You will write a BigRational class that
implements each interface.

 Let’s look at the starting code…

